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Abstract

We review a numerical technique, referred to as the Transport-based Mesh-free Method (TMM),
and we discuss its applications. We recently introduced this method from a numerical standpoint and
investigated the accuracy of integration formulas based on the Monte-Carlo methodology: quantitative
error bounds were discussed and, in this short note, we outline the main ideas of our approach.
The techniques of transportation and reproducing kernels lead us to a very efficient methodology for
numerical simulations in many practical applications, and provide some light on the methods used by
the artificial intelligence community. For applications in the finance industry, our method allows us
to compute many types of risk measures with accurate and fast algorithms. We propose theoretical
arguments as well as extensive numerical tests in order to justify sharp convergence rates, leading to
rather optimal computational times. Cases arising in finance applications support our claims and,
finally, the problem of the curse of dimensionality in finance is briefly discussed.

1 Introduction

Relying on our recent papers [11]–[13], we present
and discuss here a numerical technique, that we
refer to as the Transport-based Mesh-free Method
(TMM), which is of direct interest in numerical sim-
ulations. Our method is mesh-free (cf. for instance
[7, 16]) and somewhat similar to a Lagrangian mesh-
free method. Importantly, our method can handle
transport as well as diffusive terms and was intro-
duced first in [11].

Our motivation was to reduce as much as pos-
sible the algorithmic burden of solving partial dif-
ferential equations (PDEs) especially for problems
in large dimensions, met for instance in mathemat-
ical finance and machine learning. Computational
times reflect, in a concrete manner, the complexity
of an algorithm. For PDEs solvers, the algorithmic
complexity can be measured by establishing suitable
error estimates. For our TMM approach, in [12] we
were able to establish some Monte-Carlo type error
estimates, at least via heuristic arguments, as we
outline below in Section 2.

This allowed to perform a precise error analysis
of this method in [13], which is outlined in Section 5.

Finally, in Section 6 we discuss the limitations com-
ing from the curse of dimensionality for applications
to finance.

The TMM methodology has wide applications in
mathematical finance, since it allows one to compute
almost any risk measures, quite accurately and with
a fast algorithm. A risk measure is here understood
as a price, future prices, future sensitivities, Value
at Risk (VaR), or Counterparty Value Adjustment
(CVA), and may concern a simple asset, a complex
derivative or an investment strategy, as well as a big
portfolio of such instruments; they can be written
on any number of underlyings, themselves depend-
ing on any Markov-type stochastic processes.

The proposed method was extensively tested in
mathematical finance ones; see [11]-[13] as well as
[14] for a business case in asset and liability man-
agement using the so-called Libor market model [2].
Another business case, for front-office equity deriva-
tives, was treated using this method: it consists in
computing metrics for specific customer needs for
big portfolios of autocalls, that are useful for pre-
sales purposes. The modeling of shares uses the
Buelher dividend models [3], and the algorithm de-
scribed in [11] for local volatility calibration. For an
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application to nonlinear propagation, see [10]-[13].

2 Monte-Carlo-type strategy

We postpone the discussion of earlier references at
end of this section and outline now our strategy for
deriving a priori error estimates on multidimensional
integrals. One of our task is to investigate the valid-
ity of Monte-Carlo-type error estimates of the form∣∣∣ ∫

RD

ϕ(x)dµ− 1

N

∑
1≤n≤N

ϕ(yn)
∣∣∣ ≤ EK(Y,N,D)‖ϕ‖HK

.

(2.1)
Here, µ ∈ P(RD) is a probability measure (whose
support supp(µ) must be convex) and Y =
(y1, . . . , yN ) is a set of N distinct points in RN . We
have denoted here by HK a kernel-based Hilbert
space depending upon the choice of an admissi-
ble kernel K, that is, a continuous and symmet-
ric function K : (x, y) ∈ RD × RD 7→ R with
K(x, y) = K(y, x). Admissibility means that the
matrix

K(Y, Y ) :=
(
K(yn, ym)

)
1≤n,m≤N (2.2)

is symmetric positive-definite for any choice of Y .
The function space HK is sometimes called a repro-
ductible Hilbert kernel space (RHKS) or a native
space. The terminology is a little bit confusing, since
(2.1) is relevant for Hilbert spaces as as their gener-
alization to the corresponding Banach spaces. The
Hilbert space of interest here consists of all linear
combinations of the functions K(x, ·) (parametrized
by x ∈ RD), that is,

HK := Span
{
K(·, x) / x ∈ RD

}
, (2.3)

endowed with a norm induced by a scalar product
defined such that〈

K(·, x),K(·, y)
〉
HK

= K(x, y), x, y ∈ RD.

In (2.1), the function EK(Y,N,D) is referred to
as the discrepancy error function and can be ex-
pressed as:

EK(Y,N,D)2 =

∫∫
RD×RD

K(x, y)dµxdµy

+
1

N2

N∑
n,m=1

K(yn, ym)− 2

N

∑
1≤n≤N

∫
RD

K(x, yn)dµx.

(2.4)

Observe that this error function can be readily ap-
proximated by using, for instance, a direct Monte-
Carlo approach. We assuming that K is integrable
for the measure µ with respect to both variables.
Then we say that a sequence Y is sharp discrep-
ancy sequence if it achieves the global minimum
of the functional, that is,

Y = arg inf
Y ∈RN×D

EK(Y,N,D), (2.5)

and we denote the minimum by

EK(N,D) = EK(Y ,N,D). (2.6)

Of course, it practice, we need achieve exactly the
minimum and EK(Y ,N,D) serves as our error dis-
crepancy bound when Y is our numerical solution.

The overall construction is as follows. To any
admissible kernel K we associate the function space
HK in (2.3), within which the accuracy of a nu-
merical approximation formula can be evaluated by
computing the error function (2.4). In order to opti-
mize the convergence rate arising in (2.1), we should
choose the points in order to achieve (2.5). More-
over, whenever we are able to compute (and at least
estimate) the discrepancy error (2.6), then we have
a method for evaluating quantitatively the accuracy
of our approximation.

We now list several important classes of admis-
sible kernels:

• Translation-invariant kernels, by defini-
tion, have the form K(x, y) = ν(x − y),
where ν is a function whose Fourier trans-
form is a probability measure, that is, ν̂ ∈
P(RD) (thanks to Bochner theorem). Among
them, one can consider the important class
of radially-symmetric kernels ν(|x − y|),
including kernels generating the standard
Sobolev spaces. We emphasize that such ker-
nels are not localized in the sense that ν(x−y)
fails to be in (possibly weighted) L1(RD×RD).

• Zonal kernel [8] or power series kernels
[17], by definition, have the form K(x, y) =
F (< x, y >), where < ·, · > denotes the Eu-
clidian scalar product in RD and F : R →
R is fixed and is called an activation func-
tion. Such kernels are used by the artificial
intelligence community, together with con-
volutional kernels, which are translation-
invariant kernels of the form K(x, y) = (φ ∗
φ)(x−y) (where ∗ denotes the convolution op-
erator)s.
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Throughout, we are given a convex and open
set Ω ⊂ RD which is assumed to have a piecewise
smooth boundary and, typically, we will take [0, 1]D.
We observe that, using a transportation argument,
it is sufficient take in (2.1) the Lebesgue measure
µ = dxΩ on Ω. Namely, if S : Ω 7→ RD is a transport
map for a general measure µ, that is, the unique map
satisfying

∫
RD ϕdµ =

∫
Ω

(ϕ◦S)dx for any continuous
ϕ ∈ L1

µ(RD), together with S = ∇h, h convex and
∇ the gradient operator. Indeed, using such a map,
(2.1) can be written as∣∣∣ ∫

Ω

(ϕ ◦ S)dx− 1

N

∑
1≤n≤N

(ϕ ◦ S)(xn)
∣∣∣

≤ EK
(
X,N,D)‖ϕ‖HK

,

(2.7)

with yn = S(xn) and ϕ◦S denoting the composition
of two functions.

Let us briefly review some of the earlier liter-
ature about the estimate (2.1) arising in approxi-
mation theory. One of the most used integration
method is the direct Monte-Carlo method, and is
based on i.i.d. sequences Y ; with suitable statisti-
cal arguments and applying the law of large num-
bers, one can estimate EK(Y,N,D) ∼ 1√

N
with a

variance-type norm, that is, the space HK is re-
placed by L2

µ(RD). Low-discrepancy sequences (see
[9] and the references therein) and Sobol sequences
lead to estimates in the bounded variation space
BV ([0, 1]D) and, specifically, it is expected that

EK(N,D) . ln(N)D−1

N —a bound referred to as the
Koksma–Hlawka conjecture.

Many other estimates of this type are available
in the literature concerned with wavelets, quantifica-
tion, neural networks. Notably, for mesh-free meth-
ods, Wendland and followers derived error estimates
with radial basis functions in the 90’s; see for in-
stance [6]. Our contribution (see next section) is a
systematic study of the discrepancy error function
for a variety of admissible kernels.

3 Kernel-based estimates

A kernel is usually chosen and adapted to a spe-
cific application. Once chosen, the accuracy of the
method will eventually depend, as described in the
previous section, upon our ability to solve the min-
imization problem (2.5)-(2.6).

For applications in finance, we carefully de-
signed kernels adapted to several important re-
quirements. For instance, we present here ker-
nels based on the tensor-based Matern kernel,

which is adapted to spaces of functions ϕ =∑
0<n1<...<nk≤D ϕn1,...,nk

(xn1
, . . . , xnk

). In partic-
ular, this choice appears to be well-adapted to de-
scribe a portfolio structure. Moreover, we found it
as well important to have localized kernels, that are
kernels defined on a simple set Ω, such as [0, 1]D.
We investigated two localization techniques:

• Periodic kernels based on a discrete lat-
tice are motivated by the work by Cohn and
Elkies [4] who studied the problem of sphere
packing. Consider a family of D vectors
l1, l2, . . . , lD ∈ RD being given, and define the

lattice L :=
{∑

1≤d≤D αdld, αd ∈ Z
}

, and its

dual lattice L∗ :=
{
α∗ ∈ RD

/
< α,α∗ >∈

Z for all α ∈ L
}

. Consider any discrete func-

tion satisfying ρ(α∗) ∈ `1(L∗) with ρ(α∗) ≥ 0
and ρ(0) = 1. Then, a lattice-based kernel
is the L-periodic, translation-invariant kernel

Kper(x, y) =
1

|C|
∑
α∗∈L∗

ρ(α∗)e2iπ<x−y,α∗>,

(3.1)
where |C| is the volume of the elementary cell
C defining the lattice.

• Transported kernels are defined from pre-
scribing an admissible kernel K, (for instance
a lattice-based one), and a transport map
S : Ω 7→ RD, with S = ∇h and h convex.
Based on these data, we then introduce the
kernel

Ktran(x, y) = K(S(x), S(y)). (3.2)

In Figure 3.1 we illustrate these two localization
techniques. We plot the tensorial version of the
Matérn kernel (also called exponential kernel), that
is, the translation-invariant kernel K(x, y) := χ(x−
y) = exp(−|x− y|1), in which |x|1 =

∑D
d=1 |xd|. We

use here ρ(α) = χ̂(α) in (3.1) to define the lattice-
based kernel, while the transport map in (3.2) is
chosen to be S(x) = erf(x). Here, erf denotes the
standard error function (i.e. the integral of the nor-
mal distribution). We plots Kper(x, 0) on the left-
hand side and Ktran(x, 0) on the right-hand side
with Ω = [0, 1]D and D = 2.
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Figure 3.1: Periodic/transported Matérn kernels

For both localization techniques, we can approx-
imate the sharp discrepancy sequences in view of
(2.5). For instance, Figure (3.2) shows three distri-
butions in the two-dimensional case: the first one
is a random Mersenne Twister sequece (MT19997);
the second one is a sequence approximating the
sharp discrepancy one for the lattice-based Matérn
kernel (from the left-hand side of Figure (3.1)); the
third one corresponds to the transported Gaussian
kernel and is designed from the Gaussian kernel
K(x, y) = exp(−|x − y|2), that is a translation-
invariant, radially-symmetric kernel, to which we
applied the transport map erf.

Observe that the distribution corresponding to
the Gaussian kernel ressembles an optimal sphere
packing. On the other hand, the distribution associ-
ated with the Matérn kernel can also be interpreted
as an optimal packing (but not a sphere packing).
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Figure 3.2: Random/Matérn/Gaussian distribu-
tions with N = 256

However, while considering lattice-based kernels
(3.1), our theoretical analysis can be supported by
the following formula, which provides quantitative
information on the error (2.6):

EK(N,D) .

√
1

N

∑
n>N

φ(α∗n), (3.3)

where the ordering chosen for the lattice points α∗n

is such that the sequence φ(α∗n) is decreasing . This
formula can be evaluated numerically or theoreti-
cally using a level-set argument; see [12] for the de-
tails.

For instance, the following table was obtained in
[12] for the lattice-based Matérn kernel, in which we
compare (3.3) with the discrepancy error obtained
from the minimization problem (2.5) for a broad
range of values N and dimensions D. As can be
seen from this table, the error approximation for-
mula (3.3) is not perfectly exact, but does give a
good idea of the accuracy of the computed sequence.
Moreover, the estimate (3.3) can be roughly approx-

imated as EK(N,D) . ln(N)D−1

N , hence similar to
the one in the Koksma–Hlawka conjecture.

D=1 D=16 D=128
N=16 0.062 0.211 0.223
N=128 0.008 0.069 0.077
N=512 0.002 0.034 0.049

D=1 D=16 D=128
N=16 0.062 0.288 0.323
N=128 0.008 0.077 0.105
N=512 0.002 0.034 0.043

4 Main equations for finance

Before we can outline our approach (in the next sec-
tion), let us we briefly describe the equations that
one solves in finance, that is, the Fokker-Planck and
Kolmogorov equations. We begin with the defini-
tion of a stochastic differential equation (SDE) de-
scribing the dynamics of a Markov-type stochastic
process, denoted by t 7→ Xt ∈ RD, i.e.

dXt = r(t,Xt)dt+ σ(t,Xt)dBt. (4.1)

Here, Bt ∈ RD denotes a D-dimensional, indepen-
dent Brownian motion, while r ∈ RD is a prescribed
vector field and σ ∈ RD×D is a prescribed matrix-
valued field.

Denote by µ = µ(t, s, x, y) (defined for t ≥ s)
the density probability measure associated with
Xt, knowing the value Xs = y at the time s. We
recall that µ obeys the Fokker-Planck equation,
which is the following nonlinear partial differential
equation (defined for t ≥ s):

∂tµ− Lµ = 0, µ(t, s, x, y)|t=s,x=y = δy, (4.2)

δy being the Dirac mass weighting y, which is a
convection-diffusion equation. Moreover, the initial
data is the Dirac mass δy at some point y, while the
partial differential operator is

Lµ := ∇ · (rµ) +∇2 · (Aµ), A :=
1

2
σσT . (4.3)

Here, ∇ denotes the gradient operator, ∇· the di-
vergence operator, and ∇2 := (∂i∂i)1≤i,j≤D is the
Hessian operator. We are writing here A ·B for the
scalar product associated with the Frobenius norm
of matrices. We emphasize that weak solutions to
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(4.2) defined in the sense of distributions must be
considered, since the initial data is a Dirac mass.

The (vector-valued) dual of the Fokker-Planck
equation is the Kolmogorov equation, also known
in mathematical finance as the Black and Scholes
equations. For an unknown P = P (t, x) with t ≤ s
reads

∂tP − L∗P = 0,

L∗P := −r · ∇P +A · ∇2P ,
(4.4)

and the vector-valued function P ∈ RM models a
portfolio of M instruments where M is typically a
large integer. The Kolmogorov equations (4.4) are
the equations of interest that one solves in the appli-
cations to finance: they determine the so-called fair
values. Namely, thanks to the Feynmann-Kac the-
orem, a solution to the Kolmogorov equation (4.4)
can be interpreted to be a time-average of an expec-
tation function, as follows:

P (t, s, y) =

∫
s≤u

EXu

[
P (t, u,Xu)| Xs = y

]
du,

(4.5)
in which P (t, s,X)ds is called the payoff of any in-
struments whose underlying is described by the ran-
dom variable X. Here, we distinguish the payoff P
from its fair value, using the overline notation P .
For instance, provided s > t (t being ‘today’), then

EXs

[
P (t, s, ·)| Xt = y

]
is called the forward value

of the instrument at the time s.

Solving the Kolmogorov equations for a given
instrument allows one to compute not only its
price —which is P (0, y) = P (0, y)|(t,x)=(0,y) in the
above setting— but also all of the fair value surface
(t, x) 7→ P (t, x) (for all t ≥ 0 and x ∈ RD). This lat-
ter observation is important in an operational con-
text, since all standard risk measures can be deter-
mined from the knowledge of this surface, such as
risk measures of internal or regulatory nature, or
optimal investment strategies: for instance, Amer-
ican exercising, or sophisticated hedging strategies
based on sensitivities [14].

5 TMM in finance

Our numerical strategy, which we refer to as the
transport-based mesh-less method, allows to solve
the above two equations, namely the Fokker-Planck
and the Kolmogorov equations. Here, we only out-
line the arguments and explain how quantitative er-
ror estimates are be ensured; we refer the reader to

[11] and [13] for further details. We emphasize how-
ever that the proposed framework can be used for
more general problems of hyperbolic-parabolic type,
such as the Hamilton-Jacobi equations [10], Euler
equations, and Navier-Stokes equations.

Step 1: the forward computation. Consider
the Fokker-Planck equation (4.2) together with the
Monte-Carlo-type error estimate (2.1). Once a ker-
nel K is selected, we can apply the numerical scheme
presented earlier in [11], which is a stable and con-
sistent approximation of the Fokker-Planck equation
(4.2) and provides an approximation of the solution
µ. This approximation is a discrete probability mea-
sure of the form 1

N

(
δy1(t)+. . .+δyN (t)

)
. Interestingly

enough, Y (t) = (y1, . . . , yN )(t) converges toward a
sharp discrepancy sequence, in the sense defined in
(2.5). To check the accuracy of this numerical step,
at each discrete time we can compute the error dis-
crepancy (2.4). That is, we have the following error
estimate for any moment of the measure µ at any
time t:∣∣∣ ∫

RD

ϕ(x)dµ(t)− 1

N

∑
1≤n≤N

ϕ(yn(t))
∣∣∣

≤ EK
(
Y (t), N,D

)
‖ϕ‖HK

(5.1)

for any continuous test-function ϕ ∈ L1
µ(t)(R

D).

Then, in view of the sharp discrepancy error (2.6),
we can compare EK

(
Y (t), N,D

)
with the exact

minimum value EK(N,D) and, therefore, explicitly
check the accuracy of the numerical solution.

Let us illustrate this procedure with the (shifted)
SABR model (see [1] and the references therein)
for a time evolution with initial conditions F0 and
α0, described by the following coupled system of
stochastic differential equations:

d
(
Ft
αt

)
= ρ
(
αt(Ft + s)β 0

0 ναt

)(
dW 1

t

dW 2
t

)
.

(5.2)
Here 0 ≤ β ≤ 1 is a parameter representing the
constant elasticity of variance (CEV), ν ≥ 0 is a
constant volatility parameter, W 1

t ,W
2
t are two in-

dependent Brownian motions, and ρ is a real-valued
correlation matrix.

Consider the transported Matérn kernel in Fig-
ure 3.1 (right-hand figure). Then Figure 5.1 is a plot
of our approximation of the sharp discrepancy se-
quence for the SABR model; it uses N = 200 points
with the parameters F0 = 3%, α0 = 10%, ν = 10%,
β = 1, and ρ12 = ρ21 = 0.5. This figure shows the
set

(
y1(t), . . . , yN (t)

)
, where the y-axis represents
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the volatility process αt and x-axis the values of the
interest rates Ft.

Figure 5.1: SABR at time 0.02, 2 and 12. N=200.

Step 2: the backward computation. Once
the sharp discrepancy sequence is computed, we are
in a position to solve the Kolmogorov equation (4.4),
using t 7→ yn(t) (with n = 1, . . . , N) as a moving
transported grid, again using the numerical scheme
in [11]. This scheme provides us with an approxima-
tion which is consistent with the Kolmogorov equa-
tion and, in view of (5.1) we see that this scheme
enjoys the error estimate∣∣∣ ∫

RD

P (t, ·)dµ(t, ·)− 1

N

∑
1≤n≤N

P (t, yn(t))
∣∣∣

≤ EK
(
Y (t), N,D

)
‖P (t, ·)‖HK

.

(5.3)

Moreover, the discrete solution t 7→ P (t) ∈ RN×M
approaching

(
P (t, yn(t))

)
1≤n≤N is computed ac-

cordingly to

P (s) = Π(t,s)P (t), Π(t,s) :=
(
π(t,s)
n,m

)
1≤n,m≤N

,

(5.4)
where the matrix Π(t,s) ∈ RN×N is computed explic-
itly and is nothing but the generator of the discrete
counterpart of the Kolmogorov equation. The ma-
trix Π(t,s) is interpreted in a Markov-chaining pro-

cess setting as follows: π
(t,s)
n,m is the probability that

the stochastic process jumps from the sharp dis-
crepancy state yn(t) to the sharp discrepancy state
ym(s). Indeed, our numerical scheme, by construc-
tion, yields this matrix as a stochastic matrix –or a
bi-stochastic matrix (i.e. having each row and col-
umn summing to 1) if the underlying is a martingale
process.

We point out that we can also treat a boad set
of partial derivative operators and, for instance, for-
ward sensitivities:

∇P (s) approximates ∇yP (t, yn(t))1≤n≤N . (5.5)

This allows us to compute, for instance, hedg-
ing strategies [14]. We can also treat more com-
plex operators such as the Hessian operator or the
Helmholtz-Hodge decomposition, which are impor-
tant in, for instance, fluid dynamics.

6 Remarks on the curse of di-
mensionality in finance

Let us emphasize that our method shed some new
light on the problem of the curse of dimensionality
for applications to finance. This classical problem
is stated as follows: consider a stochastic process
modeling several underlyings t 7→ Xt ∈ RD (with
D >> 1), and consider a payoff of a complex option
P (t,Xt). In order to manage such an instrument,
we would like to have some definite confidence on
the numerical algorithm that we use for computing
its fair values or its sensitivities.

Consider first a lattice-based periodic kernel K
and the formula (3.1) for which we can specify di-
rectly its Fourier coefficients ρ(α). In particular,
using for instance the estimate (3.3), our algorithm
(5.4) for the Kolmogorov equation provide an ap-
proximation at any order of accuracy a ≥ 1/2:

∣∣∣ ∫
RD

P (t, ·)dµ(t, ·) − 1

N

∑
1≤n≤N

P (t, yn(t))
∣∣∣

≤ ‖P (t, ·)‖HK

Na
.

(6.1)

The limit case a = ∞ is quite intriguing, and we
can then also choose the function ρ(α) = 1 if α = 0,
while ρ(α) = 0 otherwise. With this limiting choice,
the function space HK contains constant functions
only and, of course, most of the ‘information” on
the function is lost. However, the main point is that
we can achieve any order of convergence at the ex-
pense of increasing the decay of the Fourier coeffi-
cients that determine a lattice-based kernel. This in
turn defines function spaces HK of functions that
are more regular as the dimension increases.

This above effect, in principle, could be prob-
lematic while managing a financial instrument that
has a rather low regularity. For instance, American-
type options require kernels and modeling functions
whose second-order derivatives are only measures.
This is even worse for autocalls, that are functions
whose first-order derivatives are signed measures.
Hence, for such instruments it is very desirable to
carefully quantify the numerical error made in com-
puting prices and derivatives. The error estimates
presented in this paper can be very helpful for this
purpose.
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7 Conclusions

In this note based on [11]–[13], we presented a new
analysis of Monte-Carlo-type integration formula,
which is relevant in a variety of applications and
leads to sharp error estimates of practical interest.

We also presented a new numerical method,
which we refer to as the Transport-based mesh-free
Method, and is designed for the numerical simula-
tions of PDEs and should be useful for a variety of
equations (hyperbolic and/or parabolic equations)
as well as applications such as artificial intelligence.
The error analysis above applies and, importantly,
we can guarantee the v alidity of an a priori and
quantitative error bound. In many cases of in-
terest, depending upon the choice of the kernels, we
can check numerically or theoretically, that the error
rate is the optimal convergence rate.

We explored some industrial applications in
mathematical finance and non-linear hyperbolic-
parabolic equations. The overall algorithm we have
developped has been found to be robust, fast, accu-
rate and was quite efficient in order to compute stan-
dard risk measures for mathematical finance. In-
deed, since we can argue that these methods exhibit
a sharp convergence rate, they tend to minimize the
algorithmic work and computational time.
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